domingo, 22 de março de 2020



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.

  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Na mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.

O operador de evolução temporal[editar | editar código-fonte]

Definição[editar | editar código-fonte]

O operador de evolução temporal U(t,t0) é definido como:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =




Propriedades[editar | editar código-fonte]

Primeira propriedade[editar | editar código-fonte]

A operador da evolução temporal deve ser unitário. Isto é necessário porque nós precisamos que a norma do estado "ket" não mude com o tempo. Isto é,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Em consequência disto,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =




Segunda propriedade[editar | editar código-fonte]

Distintamente U(t0,t0) = I, a função identidade. Como:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Terceira propriedade[editar | editar código-fonte]

A evolução temporal de t0 para t pode ser vista como a evolução temporal de t0 para um tempo t1 indeterminado e de t1 para o tempo final t. Então conclui-se:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =




Equação diferencial para o operador da evolução temporal[editar | editar código-fonte]

Se dermos, por convenção, o índice t0 no operador da evolução temporal de forma que t0 = 0 e escrevermos isto com U(t). A Equação de Schrödinger pode ser re-escrita da seguinte forma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Onde H é o Hamiltoniano para o sistema. Como  é uma constante de ket (o estado ket é da forma t = 0), nós vemos que o operador da evolução temporal obedece a Equação de Schrödinger:
Se o hamiltoniano independe do tempo, a solução da equação acima será:
Onde nós também usamos o facto que t = 0U(t) precisa reduzir para a função identidade. Assim obteremos:
Perceba que  é um ket arbitrário. Apesar de que, se o ket inicial é um valor próprio do hamiltoniano, com o valor próprio E, nós temos:
Assim, vemos que os valores próprios do hamiltoniano são estados estacionários, eles apenas escolhem um fator de fase global já que eles evoluem com o tempo. Se o hamiltoniano é dependente do tempo, mas os hamiltonianos de diferentes tempo comutam, então o operador da evolução temporal pode ser escrito da forma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Uma alternativa para a Representação de Schrödinger é trocar para uma rotação de referências de quadros, que seja rotacionada pelo propagador do movimento. Desde que a rotação ondulatória seja agora assumida pelo próprio referencial, uma função de estados não perturbados surge para ser verdadeiramente estáticos.



Na mecânica quântica, a Representação de Dirac ou Representação de Interação é uma intermediação entre a Representação de Schrödinger e a Representação de Heisenberg. Considerando que nas outras duas representações ou o vetor do estado quântico ou o operador possuem dependência com o tempo, na Representação de Dirac ambas possuem parte da dependência do tempo dos observáveis.
Equações que incluem operadores agindo em tempos distintos, que são comportadas na Representação de Dirac, não necessariamente serão comportados nas representações de Schrödinger e Heisenberg. Isto é porque transformações unitárias do tempo se relaciona com operadores de uma representação com o operador análogo da outra representação.

Definição[editar | editar código-fonte]

Operadores e vetores dos estados quânticos na Representação de Dirac são relacionados pela mudança de base para aqueles operadores e vetores na Representação de Schrödinger.[1]
Para alternar na Representação de Dirac, nós dividimos o hamiltoniano da Representação de Schrödinger em duas partes, . Qualquer escolha das partes nos dará uma Representação de Dirac válida, mas para nos ser útil na simplificação do problema, as partes serão escolhidas de forma que  será facilmente resolvido e  conterá as partes mais difíceis de analisar deste sistema.
Se o hamiltoniano for dependente do tempo (por exemplo, se o sistema quântico interagir com um campo elétrico aplicado externo que varia com o tempo), normalmente nos será vantajoso incluir explicitamente os termos dependentes do tempo com , deixando o  independente do tempo. Nós iremos assumir que este será o caso. (se existir um contexto em que isto faça sentido ter um  dependente do tempo, então deve-se trocar  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


Vetor do estado quântico[editar | editar código-fonte]

O vetor do estado quântico na Representação de Dirac é definido como [2]
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Onde  é o mesmo vetor da Representação de Schrödinger.

Operadores[editar | editar código-fonte]

Um operador na Representação de Dirac é definido como
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Perceba que  não será dependente de t e pode ser reescrito como .

Operador hamiltoniano[editar | editar código-fonte]

Para o operador  a Representação de Dirac e Schrödinger são idênticas
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Isto pode ser comprovador usando o facto que os operadores comutáveis com funções diferenciáveis. Este operador em particular também pode ser escrito da forma  sem ambiguidade.
Para a perturbação hamiltoniana , teremos
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



onde a perturbação hamiltoniana da Representação de Dirac se torna um hamiltoniano dependente do tempo (a não ser que ).
É possível de se obter a Representação de Dirac para um hamiltoniano dependente do tempo , mas os exponencias precisam ser substituídos pelo propagador unitário devido para  ou mais explícito com uma integral exponencial ordenada pelo tempo.

Matriz densidade[editar | editar código-fonte]

matriz densidade pode se demonstrada transformando a Representação de Dirac da mesma forma como qualquer outro operador. Em particular, deixe  e  ser a matriz de densidade na Representação de Dirac e na Representação de Schrödinger, respectivamente. Se existe possibilidade de  ser no estado físico , então


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


Equações da evolução temporal[editar | editar código-fonte]

Estados da evolução temporal[editar | editar código-fonte]

Transformando a Equação de Schrödinger numa Representação de Dirac teremos:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Esta equação se refere à equação Schwinger-Tomonaga.

Operadores da evolução temporal[editar | editar código-fonte]

Se o operador  é independente do tempo então a evolução temporal correspondente para  é dada por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =




Na Representação de Dirac os operadores evoluem no tempo como os operadores da Representação de Heisenberg com o hamiltoniano .

Evolução temporal da matriz densidade[editar | editar código-fonte]

Transformando a equação de Schwinger-Tomonaga na linguagem da matriz densidade teremos
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =









Na mecânica quântica, a equação de Schrödinger é uma equação diferencial parcial que descreve como o estado quântico de um sistema físico muda com o tempo. Foi formulada no final de 1925, e publicado em 1926, pelo físico austríaco Erwin Schrödinger.[1]
Na mecânica clássica, a equação de movimento é a segunda lei de Newton, (F = ma) utilizada para prever matematicamente o que o sistema fará a qualquer momento após as condições iniciais do sistema. Na mecânica quântica, o análogo da lei de Newton é a equação de Schrödinger para o sistema quântico (geralmente átomos, moléculas e partículas subatômicas sejam elas livres, ligadas ou localizadas). Não é uma equação algébrica simples, mas, em geral, uma equação diferencial parcial linear, que descreve o tempo de evolução da função de onda do sistema (também chamada de "função de estado").[2]:1–2
O conceito de uma função de onda é um postulado fundamental da mecânica quântica. A equação de Schrödinger também é muitas vezes apresentada como um postulado separado, mas alguns autores[3]:Capítulo 3 afirmam que pode ser derivada de princípios de simetria. Geralmente, "derivações" da equação demonstrando sua plausibilidade matemática para descrever dualidade onda-partícula.
Na interpretação padrão da mecânica quântica, a função de onda é a descrição mais completa que pode ser dada a um sistema físico. As soluções para a equação de Schrödinger descrevem não só sistemas molecularesatômicas e subatômicas, mas também os sistemas macroscópicos, possivelmente, até mesmo todo o universo.[4]:292ff A equação de Schrödinger, em sua forma mais geral, é compatível tanto com a mecânica clássica ou a relatividade especial, mas a formulação original do próprio Schrödinger era não-relativista.
A equação de Schrödinger não é a única maneira de fazer previsões em mecânica quântica — outras formulações podem ser utilizadas, tais como a mecânica matricial de Werner Heisenberg, e o trajeto da integração funcional de Richard Feynman.

Equação[editar | editar código-fonte]

Equação dependente do tempo[editar | editar código-fonte]

Usando a notação de Dirac, o vetor de estados é dado, em um instante  por . A equação de Schrödinger dependente do tempo, então, escreve-se:[5]
Equação de Schrödinger Dependente do Tempo (geral)
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



Em que  é a unidade imaginária é a constante de Planck dividida por , e o Hamiltoniano  é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.

Equação independente do tempo[editar | editar código-fonte]

Equação unidimensional[editar | editar código-fonte]

Em uma dimensão, a equação de Schrödinger independente do tempo para uma partícula escreve-se:[6]
,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



em que  é a função de onda independente do tempo em função da coordenada  é a constante de Planck  dividida por  é a massa da partícula;  é a função energia potencial e  é a energia do sistema.



As formulações matemáticas da mecânica quântica são os formalismos matemáticos que permitem uma descrição rigorosa da mecânica quântica. Estas, por sua vez, se distinguem do formalismo matemático da mecânica clássica pelo uso de estruturas matemáticas abstratas, tais como espaços de Hilbert de dimensão infinita e operadores sobre estes espaços. Muitas destas estruturas são retiradas da análise funcional, uma área de pesquisa da matemática que foi influenciada, em parte, pelas necessidades da mecânica quântica. Em resumo, os valores de observáveis ​​físicos, tais como energia e momento linear já não eram considerados como valores de funções em espaço de fase, mas como autovalores, mais precisamente como valores espectrais de operadores lineares no espaço de Hilbert.[1]
Estas formulações da mecânica quântica continuam a ser utilizadas hoje. No centro da descrição estão as ideias de estado quântico e quantum observáveis que são radicalmente diferentes daqueles usados ​​em anos anteriores nos modelos da realidade física. Enquanto a matemática permite o cálculo de muitas quantidades que podem ser medidas experimentalmente, há um limite teórico definido para valores que podem ser medidos em simultâneo. Essa limitação foi elucidada por Heisenberg através de um experimento mental, e é representada matematicamente no novo formalismo pela não comutatividade dos observáveis quânticos.
Antes do surgimento da mecânica quântica como uma teoria separada, a matemática utilizada na física consistiu principalmente de geometria diferencial e equações diferenciais parciaisTeoria das probabilidades foi utilizado em mecânica estatística. A intuição geométrica claramente desempenhou um papel importante nos dois primeiros casos e, consequentemente, em teorias da relatividade que foram formuladas inteiramente em termos de conceitos geométricos. A fenomenologia da física quântica surgiu aproximadamente entre 1895 e 1915, e de 10 a 15 anos antes do surgimento da teoria quântica (cerca de 1925) os físicos continuaram a pensar na teoria quântica dentro dos limites do que é agora chamado física clássica, e em particular dentro das mesmas estruturas matemáticas. O exemplo mais sofisticado disso é a regra de quantização de Sommerfeld-Wilson-Ishiwara, que foi formulada inteiramente no espaço de fase clássico.

Postulados da mecânica quântica[editar | editar código-fonte]

Na Mecânica Clássica a descrição de um sistema físico é resumida da seguinte forma:
  • O estado físico do sistema em um dado tempo t0 é descrito por especificando-se as  coordenadas generalizadas  e seus momentos conjugados 
  • O valor dessas grandezas físicas em um dado tempo é completamente determinado se o estado desse sistema neste tempo é conhecido. Ou seja, se o estado do sistema é conhecido podemos determinar com exatidão o estado posterior do sistema após a medida feita em 
  • A evolução no estado do sistema é dado pelas leis de Newton ou por formulações equivalentes (mecânica lagrangiana ou hamiltoniana). O estado do sistema fica completamente determinado se conhecemos suas condições iniciais
A mecânica quântica pode ser formulada a partir de diversos conjuntos de postulados e de diversos formalismos matemáticos. Seguem os postulados que fazem uso da análise funcional e que são adotados por considerável parte de textos básicos de mecânica quântica[2].
  • Todo sistema físico está associado a um espaço de Hilbert H complexo e separável, sendo o produto interno de H definido por . A todo estado físico associa-se um conjunto de vetores unitários de H que diferem apenas por uma fase complexa.
  • Os resultados possíveis em uma medida de um observável correspondem ao espectro do observável correspondente.
  • Seja A um observável físico com espectro discreto . Quando é realizada uma medida em A, a probabilidade  de encontrar o autovalor  é dada por
,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



onde  é o grau de degenerescência de  e  correspondem aos autovetores de A com autovalor .
  • Se em uma medida de uma grandeza física  no estado  encontramos um autovalor  de , imediatamente após a medida o estado do sistema será a projeção normalizada de  no auto-espaço associado a . Dessa forma, toda medida imediatamente após a primeira medida terá o mesmo resultado.
  • A evolução no tempo  do vetor de estado de um sistema físico é governada pela equação de Schrödinger, desde que o sistema físico mantenha coêrencia
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



onde H é o Hamiltoniano do sistema e  é a constante reduzida de Planck.
  • O Postulado da simetrização nos diz que quando um sistema possui várias partículas idênticas somente alguns kets do espaço dos estados podem descrever um sistema físico. Estes kets são, dependendo da natureza das partículas, completamente simétricos ou completamente assimétricos com respeito à permutação das partículas. Particulas que possuem vetores de estado simétricos são chamadas de bósons enquanto que as que possuem vetores de estado assimétrico são chamadas de férmions.

Referências




Notação Bra-ket é uma notação padrão para descrever estados quânticos na teoria da mecânica quântica. Ela também é utilizada para denotar vetores e funcional linear abstratos na matemática pura. É assim chamada por ser o produto interno de dois estados denotados por um bracket consistindo de uma parte esquerda,  denominada bra, e uma parte direita,  denominada ket. A notação foi criada por Paul Dirac, e por isso é também conhecida como notação de Dirac.[1][2]

Bras e kets[editar | editar código-fonte]

Uso mais comum: Mecânica quântica[editar | editar código-fonte]

As componentes reais do vetor 3d e a projeção da base; semelhanças entre cálculo notação vetorial e notação de Dirac.
Em mecânica quântica, o estado físico de um sistema é idêntificado como um raio unitário em um espaço de Hilbert separável complexo ou, equivalentemente, por um ponto no espaço de Hilbert projetado de um sistema. Cada vetor no raio é chamado um "ket" e escrito como  que deve ser lido como "psi ket".[3]
O ket pode ser visualizado como um vetor coluna e (dada uma base para o espaço de Hilbert) escrito por extenso em componentes,
quando o espaço de Hilbert considerado possuir finitas dimensões. Em espaços de dimensão infinita, há infinitas componentes e o ket deve ser escrito em notação de função, precedido por um bra (veja abaixo). Por exemplo,
Todo ket  possui um bra dual, escrito como  Por exemplo, o bra correspondente ao  acima deve ser um vetor linha
Isto é um funcional linear contínuo de  para os números complexos  definido por:
para todo ket 
onde  denota o produto interno definido sobre o espaço de Hilbert.Aqui, uma vantagem da notação bra-ket torna-se clara: quando removemos os parênteses (como é comum em funcionais lineares) e fundimos junto com as barra, obtemos  que é a notação comum para produto interno no espaço de Hilbert. Esta combinação de um bra com um ket para formar um número complexo é chamada bra-ket ou bracket.
Em mecânica quântica a expressão  (matematicamente o coeficiente para a projeção de  em ) é tipicamente interpretada como a amplitude de probabilidade para o estado  para o colapso no estado 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =






Um estado quântico é qualquer estado possível em que um sistema mecânico quântico possa se encontrar. Um estado quântico plenamente especificado pode ser descrito por um vetor de estado, por uma função de onda ou por um conjunto completo de números quânticos para um dado sistema. Vetores de estado quântico, na interpretação mais comum da mecânica quântica, não têm realidade física. O que tem significado físico são as probabilidades que podem ser calculadas a partir deles e não os vetores em si.[1] Ao estado quântico de menor energia possível dá-se o nome de estado quântico fundamental.
Na física quântica, o estado quântico se refere ao estado de um sistema isolado. Um estado quântico fornece uma distribuição de probabilidade para o valor de cada observável, ou seja, para o resultado de cada medida possível no sistema. O conhecimento do estado quântico juntamente com as regras para a evolução do sistema no tempo esgota tudo o que se pode prever sobre o comportamento do sistema.
Uma mistura de estados quânticos é novamente um estado quântico. Os estados quânticos que não podem ser escritos como uma mistura de outros estados são chamados estados quânticos puros, todos os outros estados são chamados de estados quânticos mistos.
Matematicamente, um estado quântico puro pode ser representado por um raio em um espaço de Hilbert sobre os números complexos.[2] O raio é um conjunto de vetores diferentes de zero diferindo apenas por um fator escalar complexo; qualquer um deles pode ser escolhido como um vetor de estado para representar o raio e, portanto, o estado. Um vetor unitário é normalmente escolhido, mas seu fator de fase pode ser escolhido livremente de qualquer maneira. No entanto, esses fatores são importantes quando vetores de estado são adicionados para formar uma superposição.
O espaço de Hilbert é uma generalização do espaço euclidiano comum[3] e contém todos os possíveis estados quânticos puros do sistema dado.[4] Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.
Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =



que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.
Um estado quântico misto corresponde a uma mistura probabilística de estados puros; no entanto, diferentes distribuições de estados puros podem gerar estados mistos equivalentes (isto é, fisicamente indistinguíveis). Os estados mistos são descritos pelas chamadas matrizes de densidade. Um estado puro também pode ser reformulado como uma matriz de densidade; desta forma, os estados puros podem ser representados como um subconjunto dos estados mistos mais gerais.
Por exemplo, se o spin de um elétron é medido em qualquer direção, por exemplo com um experimento de Stern-Gerlach, há dois resultados possíveis: para cima ou para baixo. O espaço de Hilbert para o spin do elétron é, portanto, bidimensional. Um estado puro aqui é representado por um vetor complexo bidimensional , com um comprimento de um; isto é, com
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =




onde  e  são valores absolutos  e . Um estado misto, neste caso, tem a estrutura de uma matriz  isso é, hermitiano, positivo-definido, e tem o traço 1.
Antes que uma medição particular seja realizada em um sistema quântico, a teoria geralmente fornece apenas uma distribuição de probabilidade para o resultado, e a forma que essa distribuição assume é completamente determinada pelo estado quântico e pelo observável que descreve a medição. Essas distribuições de probabilidade surgem tanto para estados mistos quanto para estados puros: é impossível na mecânica quântica (ao contrário da mecânica clássica) preparar um estado no qual todas as propriedades do sistema sejam fixas e certas. Isso é exemplificado pelo princípio da incerteza e reflete uma diferença central entre a física clássica e a física quântica. Mesmo na teoria quântica, no entanto, para todo observável existem alguns estados que têm um valor exato e determinado para aquele observável.[3][5]